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Abstract

Traumatic brain injury (TBI) is a leading cause of mortality and morbidity amongst trauma patients. Its treatment is focused on
minimizing progression to secondary injury. Administration of propranolol for TBI maydecrease mortality and improve functional
outcomes. However, it is our sense that its use has not been universally adopted due to low certainty evidence. The literature was
reviewed to explore the mechanism of propranolol as a therapeutic intervention in TBI to guide future clinical investigations.
Medline, Embase, and Scopus were searched for studies that investigated the effect of propranolol on TBI in animal models from
inception until June 6, 2023. All routes of administration for propranolol were included and the following outcomes were evalu-
ated: cognitive functions, physiological and immunological responses. Screening and data extraction were done independently
and in duplicate. The risk of bias for each individual study was assessed using the SYCLE's risk of bias tool for animal studies.
Three hundred twenty-three citations were identified and 14 studies met our eligibility criteria. The data suggests that propranolol
may improve post-TBI cognitive and motor function by increasing cerebral perfusion, reducing neural injury, cell death, leukocyte
mobilization and p-tau accumulation in animal models. Propranolol may also attenuate TBI-induced immunodeficiency and provide
cardioprotective effects by mitigating damage to the myocardium caused by oxidative stress. This systematic review demonstrates
that propranolol may be therapeutic in TBI by improving cognitive and motor function while regulating T lymphocyte response and
levels of myocardial reactive oxygen species. Oral or intravenous injection of propranolol following TBI is associated with improved
cerebral perfusion, reduced neuroinflammation, reduced immunodeficiency, and cardio-neuroprotection in preclinical studies.
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Introduction

Traumatic brain injury (TBI) is a leading cause of mor-
tality among trauma patients (Waxweiler et al. 1995) and
results in heavy societal socioeconomic burdens (Maas et al.
2017). Survivors often experience long-term disability, loss
of functional independence, poor quality of life and loss of
productivity in addition to deficits in cognition, memory,
mobility, and psychosocial function (Ma et al. 2014).

Pathophysiology

TBI is a complex biphasic pathophysiological condition char-
acterized by primary and secondary injuries. Primary injury is
caused by direct mechanical insult to brain tissue. Secondary
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injury occurs as a result of a cascade of events leading to neu-
ronal cell death following the injury (Lerouet et al. 2021). Dur-
ing the period of secondary injury there is a catecholamine surge
(Rizoli et al. 2017), which causes hyperthermia, hypertension,
tachycardia, tachypnea, and diaphoresis. The adrenergic storm
induced by the initial insult may worsen the prognosis by cere-
bral vasoconstriction induced ischemia (MacKenzie et al. 1976).

Excitotoxicity involves neurons firing too frequently
causing the release of excess s glutamate and results in
increased intracellular calcium (Weber 2012). This causes
activation of endonucleases, proteases, and phospholipases
that damage DNA, cell membranes, and other crucial cel-
lular structures (McGuire et al. 2019). Oxidative stress is
another contributor to secondary injury caused by an excess
production of reactive oxygen and nitrogen species leading
to lipid peroxidation, protein carbonylation and DNA oxida-
tion (Lerouet et al. 2021).
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Neuroinflammation is also a key factor in the exacerba-
tion of secondary injury. Inflammatory responses involve
recruitment of peripheral monocytes, neutrophils, and
lymphocytes through the blood-brain barrier by resident
immune cells (Simon et al. 2017). Upon activation, glial
cells can release proinflammatory cytokines such as TNF,
IL-6, and IL-1p.

Role of Beta Blockade

Little progress has been made towards improving the
treatment of TBIs. Existing treatment paradigms focus
on minimizing progression of secondary injury (Ma et al.
2014) by maintaining adequate brain perfusion, limiting
cerebral edema, and optimizing oxygen delivery (Kochanek
et al. 2019). Increased catecholamine levels drive the
systemic inflammatory response (Di Battista et al. 2016a),
coagulopathy, and endotheliopathy (Di Battista et al. 2016b);
increase cardiac and cerebral oxygen demands (Diinser and
Hasibeder 2009); lead to hypermetabolism and loss of lean
body mass (Monk et al. 1996); and cause vasogenic cerebral
edema by increasing intracapillary hydrostatic pressure
edema (Naredi et al. 1998; Chioléro et al. 1989; Friese et al.
2008). Because excessive catecholamine release is a major
catalyst in augmenting secondary injury, reducing this
response is an area of potential therapeutic interest (Sasaki
and Dunn 2001). Several large retrospective cohort studies
in TBI patients receiving beta-blockers reported improved
neurologic outcomes (Heffernan et al. 2010; Cotton et al.
2007; Arbabi et al. 2007; Inaba et al. 2008). Based on a
recent systematic review (12,721 patients in 15 human
studies), the administration of propranolol in patients with
TBI significantly improved survival and was associated with
improved long-term functional outcome when compared to
patients who did not receive treatment (Ding et al. 2021).
Furthermore, propranolol did not increase the series of serious
adverse events. By counteracting the catecholamine surge
following TBI, beta-adrenergic receptor blockade may reduce
the cascade of secondary injuries and improve neurological
outcomes (Rizoli et al. 2017).

Murine models have shown that early beta-blocker
administration increases cerebral perfusion, decreases cer-
ebral hypoxia and edema, and improves neurologic recovery
(Ley et al. 2010). Propranolol, a lipophilic agent, is con-
sidered the beta-blocker of choice because it readily pen-
etrates the blood-brain barrier (Neil-Dwyer et al. 1981).
Catecholamine inhibition may reduce cerebral vasospasm
and improve delivery of cerebral oxygen (Schroeppel et al.
2014). Other plausible mechanisms include decreased cer-
ebral oxygen consumption and reduced immunodeficiency
(Ley et al. 2010). For example, a reduction in metabolic rate
with propranolol administration, thereby reducing energy
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expenditure and protein catabolism in patients with TBI
has been reported (Chioléro et al. 1989). Another study of
55 trauma patients in the ICU treated with beta-blockers
reported that beta blockade reduced circulating levels of
IL-6 in trauma patients (Friese et al. 2008). Given its poten-
tial to reduce secondary injury after TBI, propranolol has
been introduced as an early-response treatment in some
hospitals. Likely due to low certainty of evidence evalu-
ating efficacy with beta blockers in TBI and the potential
for adverse effects (e.g. bradycardia and hypotension), their
use in this population has not been universally adopted. An
improved understanding of the molecular and physiologi-
cal mechanisms by which propranolol attenuates second-
ary injury following TBI will inform future research and
improve clinician confidence with the medication in this
patient population. The objective of this systematic review
of preclinical studies is to explore the mechanism of pro-
pranolol as a potential therapeutic intervention in TBI.
Ouraim was to summarize succinctly the plausible mecha-
nisms for propranolol’s action to inform future clinical trials.

Methods

Medline,Embase and Scopus were searched from incep-
tion until June 6, 2023 (Appendix 1 provides the Medline,
Embase, and Scopus search strategies). A preliminary lit-
erature search was conducted, which showed that majority
of the preclinical studies were conducted after the 2000s.
Included were all published, full-text, primary studies in
English that investigated the effect of propranolol on the
management of TBI in animal models. Studies reporting on
any models of induced-TBI using any method and in any
species were included. Currently, there is insufficient evi-
dence in humans to conduct a systematic review. Animal
models are useful before clinical studies can be performed or
for generating hypotheses. Furthermore, animal studies were
chosen because the study subjects are much more homog-
enous in their injury patterns and the time between injury
and testing, facilitating the interpretation of their responses
to treatment. All routes of administration for propranolol
(intravenous, intraperitoneal, and oral) were included. Out-
comes including changes in cognitive functions as well as
physiological or immunological responses were evaluated.
Studies were excluded for the following reasons: wrong
study design, wrong intervention, wrong patient population
and duplicate studies.

Two reviewers (J.J. and Y.L.) independently screened
the titles and abstracts of all citations identified with the
search. Subsequently, the same reviewers screened full-texts
of identified studies. Disagreements were resolved using a
third reviewer (I.B.), when necessary. Covidence® (2023)
was used to facilitate the screening process. References of
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eligible full text articles were screened for additional studies
and presented a descriptive synthesis of the results from the
included studies.

Data Extraction and Risk of Bias Assessment

Study information including study design, animal
model, propranolol administration, outcomes, and major
findings were collected independently by two reviewers
and organized using Excel (Excel for Mac 2021, version
16.56; Redmond, WA). The same two reviewers who
screened the articles independently conducted the risk of
bias assessment of the included studies using the SYCLE’s
risk of bias tool for animal studies (Hooijmans et al. 2014).
The domains assessed include selection bias (sequence
generation, baseline characteristics, allocation concealment),
performance bias (random housing, blinding), detection

bias (random outcome assessment, blinding), attribution
bias (incomplete outcome data), reporting bias (selective
outcome reporting), and other sources of bias.

Results

Of the 323 citations identified in the search, 14 studies met
our eligibility criteria (Fig. 1) (Armstead and Vavilala 2019;
Genét et al. 2018; Kota et al. 2016; Larson et al. 2012; Ley
et al. 2009, 2010, 2012; Lopez et al. 2022a; Lopez et al.
2022b; Singer et al. 2023; Wallen et al. 2022; Yang et al.
2019; Zeeshan et al. 2019; Zlotnik et al. 2012). Studies used
different animals including Yorkshire pigs (Armstead and
Vavilala 2019), Sprague-Dawley rats (Genét et al. 2018; Kota
et al. 2016; Larson et al. 2012; Yang et al. 2019; Zlotnik et al.
2012), C57/B16 mice (Ley et al. 2012; Zeeshan et al. 2019;
Singer et al. 2023; Wallen et al. 2022), CD1 mice (Lopez

Fig.1 PRISMA flowchart of
systematic review [ Identification of studies via databases and registers }
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'% Records identified from: 4D;1)p||cate records removed (n =
= “Eﬂﬁgkgf (n_=3§310()) —» Records marked as ineligible by
T S (E 6 ) automation tools (n = 0)
g copus (n = 0) Records removed for other
= reasons (n = 0)
—
\ 4
Records screened > Records excluded
(n=323) (n =215)
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Reports sought for retrieval Reports not retrieved
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et al. 2022a, b), and BALB/C mice (Ley et al. 2010; Ley
et al. 2009). TBI was induced with either weight-drop (Ley
et al. 2010; Ley et al. 2009; Singer et al. 2023; Wallen et al.
2022), controlled cortical impact (Kota et al. 2016; Yang
et al. 2019), closed-head injury (Zlotnik et al. 2012; Ley
et al. 2012; Zeeshan et al. 2019), or lateral fluid percussion
(Armstead and Vavilala 2019; Genét et al. 2018; Larson et al.
2012), (Fig. 2).

Propranolol was administered via different routes includ-
ing intravenous (Ley et al. 2010; Armstead and Vavilala 2019;
Genét et al. 2018; Ley et al. 2012), intraperitoneal (Kota et al.
2016; Yang et al. 2019; Zlotnik et al. 2012; Zeeshan et al. 2019;
Lopez et al. 2022a, b; Singer et al. 2023; Wallen et al. 2022; Ley
et al. 2009), or oral (Larson et al. 2012). Studies reported physi-
ological, immunologic, and cognitive outcomes. Physiological
responses included blood pressure, heart rate (Genét et al. 2018;
Larson et al. 2012; Zlotnik et al. 2012), catecholamine levels
(Genét et al. 2018; Kota et al. 2016; Yang et al. 2019), glucose
metabolism (Ley et al. 2012; Zlotnik et al. 2012), body weight
loss (Lopez et al. 2022a, b), blood brain barrier permeability
(Genét et al. 2018; Kota et al. 2016; Lopez et al. 2022a, b), cere-
bral perfusion, and hypoxia (Ley et al. 2010; Larson et al. 2012;
Ley et al. 2009). Immunological responses included change in
serum or cerebrospinal fluid cytokine levels (Armstead and
Vavilala 2019; Ley et al. 2012; Wallen et al. 2022; Zeeshan
et al. 2019), and immune cell responses of leukocytes (Lopez
et al. 2022a, b), microglia, macrophage (Kota et al. 2016),
T-cells, and B-cells (Yang et al. 2019). Cognitive functions
were examined using spatial learning, memory, or sensorimo-
tor tests (Kota et al. 2016; Larson et al. 2012; Ley et al. 2012;
Zeeshan et al. 2019; Lopez et al. 2022a, b; Singer et al. 2023).
Some studies also reported changes in expressions of heat shock
protein (HSP70) (Ley et al. 2012; Zeeshan et al. 2019), a prog-
nostic marker for survival in TBI and inhibitor of apoptosis

(Ley et al. 2012; Beere et al. 2000); ubiquitin carboxyl-terminal
hydrolase isozyme L1 (UCHL-1) (Zeeshan et al. 2019), a brain-
specific marker of injured neurons (Zeeshan et al. 2019; Day
and Thompson 2010); and hyperphosphorylated tau (p-tau)
(Singer et al. 2023), which has been linked to the development
of chronic traumatic encephalopathy, Alzheimer’s and Parkin-
son’s disease (Katsumoto et al. 2019; Padmakumar et al. 2022).

The summary of propranolol’s proposed mechanisms
based on preclinical studies is illustrated in Fig. 3. Data
extraction was conducted on all selected studies and study
summary was described in Table 1. The risk of bias assess-
ment suggested that the included studies had minimal risk in
reporting bias, attribution bias, and other sources of biases
(Table 2). However, most studies did not have sufficient
information for assessment of selection bias (allocation
concealment), performance bias (random housing, blind-
ing), and detection bias (random outcome assessment).
Notably, one study randomly assigned mice to experimen-
tal groups based on the date of receiving the mice (Singer
et al. 2023); another reported the number of rearing and
ambulatory events for motor performance but subsequently
illustrated the data as a ratio of TBI/sham mice (Ley et al.
2012). Thus, these two studies potentially have a high risk of
bias in allocation concealment and selective outcome report-
ing, respectively.

Types of Preclinical TBI Models

In fluid percussion injury (FPI), fluid pulses are applied
directly to exposed dura. This model permits control over
dwell time and impact pressure. The controlled cortical
impact (CCI) model uses a controlled piston to penetrate
the exposed dura. The CCI model allows for control over
the depth, speed, and dwell time of the piston in a highly

Fig. 2 Illustration of the various Closed head injury
traumatic brain injury animal
models identified from the ( \
preclinical studies including A) B) C)
A) weight-drop, B) controlled ’ ’
cortical impact (CCI), C) and 1 ' ‘;;‘
fluid percussion injury (FPI) C;i d\
b = ‘\9:§3
| S
Cr— 3
o }
| S
|
% ) & ) = ¢ [ t‘ |
g e ; -
g d &= b\ri
Weight-drop Controlled-cortical impact Fluid percussion injury
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Fig.3 Summary of the pro-
posed mechanisms of proprano-
lol in traumatic brain injury
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reproducible fashion. Because the FPI and CCI models
require craniotomy, they change the intracranial pressure,
alter the immune response, and result in high mortality in
the mice. Alternatively, the weight-drop model involves
using a free-falling weight that directly impacts an open or
closed skull. It resembles the injury mechanism in human
patients with TBIL.

Cerebral Perfusion

Several randomized trials by the Ley group have evaluated the
effect of propranolol on cerebral perfusion in animal models
(Ley et al. 2009, 2010, 2012). In 2009, they measured cerebral
perfusion and hypoxia in BALB/C mice that underwent injury
via a weight-drop model (Ley et al. 2009). The investigators
administered intraperitoneal injections of propranolol (10 mg/
kg) 15-minutes and 24-hours post-TBI. Compared to the pla-
cebo, mice that received propranolol treatment displayed
significant improvements in cerebral perfusion measured by
immunohistochemistry and PET imaging. Cerebral hypoxia
was reduced by 24.2% compared to placebo. Another study
examined the effects of varied dosing and timing of proprano-
lol treatment in BALB/C mice with severe TBI induced by the

Improved neurological

function and health
outcomes

same weight-drop model (Ley et al. 2010). Injured mice were
subject to an intravenous injection of propranolol at high-dose
(4 mg/kg) or low-dose (1 mg/kg) at either 15- or 60-minutes
following injury. Propranolol treatment at high dose displayed
significant improvements in cerebral reperfusion measured by
PET standard uptake value (SUV) compared to the placebo in
both the early and delayed intervention groups, and low dose
propranolol was inferior to high dose in the early interven-
tion groups. This implies that, early, high-dose propranolol
treatment may be effective at attenuating TBI-related reduc-
tion in cerebral perfusion in animal models. Additionally, the
group also measured the cerebral glucose metabolism, motor
performance, inflammatory cytokine level/expression, and
HSP70 expression (a prognostic marker for survival in TBI)
of C57/Bl6 mice that were subjected to controlled cortical
impact injury and treated with propranolol (Ley et al. 2012).
Previously, TBI patients have shown reduced cerebral glucose
metabolism as characterized by increased lactate/pyruvate ratio
(Vespa et al. 2005). Propranolol treatment was associated with
normalization of cerebral glucose metabolism comparable to
that of the uninjured mice (Ley et al. 2012). Moreover, pro-
pranolol-treated mice performed significantly better at rotarod
and rearing tests 24 hours after injury, indicating improved
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motor function (Ley et al. 2012). Additionally, HSP70 is an

Table 1 (continued)

Q
o -~ 2
& 5 &R E . . ;

% B8 : EEEER % Z anti-apoptotic protein that can protect neuronal cells from both

28 SE,S82E2%38 . . . o .

29 _BZg82fE82t g apoptosis and necrosis by directly inhibiting activators of both

S_.O‘E._,'OEE‘—'ESQ._ g pp y y g

SEZEREE 2R EE E mechanisms, and by upregulating the expressions of other anti-

&n © SR 22870 . . . .

g EE § ZE -%“ = 33 z % £ apoptotic proteins such as bcl-2 (Giffard and Yenari 2004;

S£g82,2883°2% ; .

‘~§ 3 ié’ E% 3 § £z ?3 g 2 Yenari 2005). One study suggested that propranolol treatment

&= ER=] s 82 & ° . . e .

= EEEExPEEETEY £ was associated with significantly higher levels of HSP70 and

8 EEscT2EZz255 S & y e

g gEseRT ST LS & lower levels of UCHL-1 in C57BL/6 mice subjected to closed
3 head controlled cortical impacts (Zeeshan et al. 2019). Overall,
g, p

gy _ 8 g current literature suggests that propranolol may reduce second-

s 3 & = = . . . . ..

£8 g N é ary injury following TBI and improve cognitive and motor
g e %“ g g £ & functions by increasing cerebral perfusion in animal models.
5 28388¢ =
s S8 ES = T
S = ¥ oee .

5 Cognitive Function
8
3
& g Recent studies have shown a statistically significant associa-
« 8 g y s1g
3 g T: tion between cerebral IL-6 and propranolol treatment. In a
E § E study using a pig model subjected to fluid percussion injury
- S to investigate whether an increase in IL-6 following TBI is
T ol s . g & &
iy =R 28 » = % 82 o0& 3 associated with impaired cerebral autoregulation and neu-
E 2858 ,88sEFE _SES .. . . .
g % E,) 25 g %‘; 33 g Ex § 52 z g = f) ronal cell necrosis in the hippocampus, investigators meas-
e EEw B, 888w, =2 . . .
g % =] § ;‘ g E £ j% 2 E).% E é) £E = g E ured changes in artery diameter, number of necrotic neurons,
= ST S=g - ad T a =] = N . . .
25| 5558526852288 E g%; % g transient hyperaemic response ratio (THRR), and cerebro-
SE| 522235 F5sR28:38L8| = . . .
EE|gFe2E2S8EsRE2s9 852 3 spinal fluid IL-6 levels (Armstead and Vavilala 2019). Spe-
2 cifically, THRR measured the change in blood flow before
= £ % and after compression in the common carotid artery. Pro-
é % E pranolol treatment was associated with a higher THRR, and
= =) —_— . . . . . . .
= E g I an increase in artery diameter during hypotension, indicat-
5| =
% < 2 T ing restored cerebral autoregulation. Moreover, propranolol

g ) . . )
5 %Oi g El treatment 4 hours after injury reduced cerebrospinal fluid
= 1= = E IL-6 levels and decreased the number of necrotic neurons

£ o 2 in the hippocampus.

Fe=R = 2 g .

2585382353 5 Another study measured leukocyte mobilization on the

g co5gesd & y y

DE2Ez5E8 2 enumbral endothelium in CD1 mice subjected to controlled

Lo EZ 952 = p ]

Pz g g =S E cortical impact using intravital microscopy (Lopez et al.
= Ao ESSE £ N 2022b). The mice received intraperitoneal injections of vari-
o} 2£5479% < p ]

S SE®es- 3 ous dosages of propranolol ranging from 1 mg/kg to 4 mg/kg.
. & prop ging g/kg g/Kg
s The high-dose treatment (4 mg/kg) demonstrated a significant
= . g g/kg
g = decrease in the number of rolling leukocytes at 48 hours post-
E S injury compared to the saline group and low-dose treatment
= =
S > 5 (1 mg/kg). To examine propranolol’s effect over a longer
2 B timeframe, the same researchers conducted a separate stud
=] = p y
= 5 . £ to measure leukocyte mobilization on the pial microvascula-
< =] . .
E < S 8 ture 14 days after injury (Lopez et al. 2022a). Only the 4 mg/
213 g k= kg propranolol treatment group showed a reduced number of
:% E 5 z leukocytes rolling on the pial microvasculature. Thus, a high
=1 g a . . ,
g 1e > £ E dose may be required to sustain propranolol’s effect on leu-
<8 kocyte mobilization, which subsequently reduces leukocyte
S y q y y
g o £9 responses that can cause capillary injury and neuroinflam-
g g 32 é mation. In fact, the reduction of cerebral proinflammatory
§ g _% § cytokines including IL-1a, IL-18, IL-4, IL-17, and TNF- o
g EiE ;é’ = associated with high-dose (4 mg/kg) propranolol treatment
2 Sia £ 3 has been demonstrated previously in C57/Bl16 mice 24 hours
Springer
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Table2 SYRCLE’s risk of bias assessment of included studies for systematic review

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
Armstead and Vavilala 2019  Yes Yes Unclear Unclear Unclear Unclear Yes Yes Yes Yes
Genét et al. 2018 Yes Unclear Unclear Unclear Unclear Unclear Yes Yes Yes Yes
Kota et al. 2016 Unclear Yes Unclear Unclear Unclear Unclear Yes Yes Yes Yes
Larson et al. 2012 Yes Yes Unclear Unclear Unclear Unclear Unclear Unclear Yes Yes
Ley et al. 2012 Unclear Yes Unclear Unclear Unclear Unclear Unclear Yes No Yes
Ley et al. 2010 Yes Unclear Unclear Unclear Unclear Unclear Unclear Yes Yes Yes
Ley et al. 2009 Yes Unclear Yes Unclear Yes Unclear Yes Yes Yes Yes
Lopez et al. 2022a Yes Yes Unclear Yes Unclear Unclear Yes Yes Yes Yes
Lopez et al. 2022b Yes Yes Unclear Yes Unclear Unclear Yes Yes Yes Yes
Singer et al. 2023 Yes Yes No Yes Unclear Unclear Yes Yes Yes Yes
Wallen et al. 2022 Yes Yes No Yes Unclear Unclear Yes Unclear Yes Yes
Yang et al. 2019 Yes Yes Unclear Yes Unclear Unclear Unclear Yes Yes Yes
Zeeshan et al. 2019 Yes Yes Unclear Yes Yes Unclear Yes Yes Yes Yes
Zlotnik et al. 2012 Yes Yes Unclear Yes Unclear Unclear Yes Yes Yes Yes

* DI Sequence generation, D2 Baseline characteristics, D3 Allocation concealment, D4 Random housing, D5 Blinding (performance bias),
D6 Random outcome assessment, D7 Blinding (Detection bias), D8 Incomplete outcome data, D9 Selective outcome reporting, D10 Other

sources of bias

after weight-drop induced TBI compounded with hemor-
rhagic shock (Wallen et al. 2022). However, targeting leuko-
cyte responses represents only one potential mechanism of the
neuroprotective effects of propranolol.

Accumulation of p-tau, through the generation of neurofi-
brillary tangles, has been linked to the development of chronic
traumatic encephalopathy, Alzheimer’s, and Parkinson’s dis-
ease following TBI (Katsumoto et al. 2019; Padmakumar et al.
2022) A significant increase in p-tau accumulation in the hip-
pocampus of C57/Bl6 mice subjected to weight-drop injury
was observed using immunofluorescence (IF) and immunohis-
tochemistry (IHC) (Singer et al. 2023). The accumulation was
further enhanced by hemorrhagic shock following TBI com-
pared to TBI only. Propranolol treatment significantly blunted
p-tau accumulation 30 days after injury in both mice with TBI
and TBI complexed with hemorrhagic shock. Not surprisingly,
all the propranolol-treated groups from this study showed an
improvement in the hippocampal-dependent Morrison Water
Maze test 30 days after injury characterized by a reduction in
time to raft after training (Singer et al. 2023). Furthermore, pro-
pranolol treatment was associated with higher novel object rec-
ognition scores by day 2 and the mice with TBI spent less time
completing the maze at day 4 compared to the placebo group
(Zeeshan et al. 2019). In addition, propranolol-treated (2, 4 mg/
kg) mice demonstrated neurological improvements as early as
24 hours after injury, whereas low dose treatment (1 mg/kg)
saw delayed improvements (36 hours after injury) in neurologi-
cal functions (Lopez et al. 2022b). These results suggest that
propranolol may improve memory, learning, and cognitive func-
tions post-TBI in animal models through a number of possible
mechanisms including preventing neuronal injury and cell death,
leukocyte mobilization, and p-tau accumulation.

Neurological Functions Independent of Brain
Barrier Permeability and Blood Glutamate Levels

A study investigated the therapeutic benefits of combining
propranolol with an infusion of human mesenchymal stem
cells in rats subjected to controlled cortical impact injury
(Kota et al. 2016). Propranolol was associated with a decrease
in the number of fully activated microglia in the injured brain,
which would otherwise lead to further central inflammatory
responses and neuronal cell death (Loane and Faden 2010).
However, propranolol alone did not reduce blood brain barrier
permeability. Another study investigated the effect of pro-
pranolol on edema in rats subjected to lateral fluid percussion
injury, where edema was measured by brain water content
and blood brain barrier permeability 24 hours after injury
(Genét et al. 2018). Propranolol treatment had no effect on
brain water content or blood brain barrier permeability. Con-
versely, an improvement in blood brain barrier integrity in
propranolol-treated mice measured by reduced albumin leak-
age 24 hours after injury was observed (Lopez et al. 2022b).
This correlated with a reduction in edema in the hemisphere
ipsilateral to the injury. However, when measured 14 days
after injury, the permeability of the pial microvasculature did
not change in propranolol treated mice, regardless of the dose
(1,2, 4 mg/kg) (Lopez et al. 2022a). Therefore, propranolol’s
effect on blood brain barrier permeability appears to diminish
over the course of treatment.

The influx of glutamate within the brain following TBI
has previously been linked to neurotoxic effects (Baker
et al. 1993; Zauner et al. 1996; Koura et al. 1998). When
investigating the effects of propranolol on blood glutamate
levels and the neurological outcomes of rats subjected to
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closed head injury, decreasing blood glutamate levels were
correlated with neurological improvement in motor func-
tions and behaviour (Zlotnik et al. 2012). However, pro-
pranolol treatment prevented the blood glutamate levels
from decreasing 60 minutes after injury compared to the
saline-treated group. Both propranolol and saline treat-
ments showed neurological improvements 60 minutes
after injury.

Other Outcomes

Severe TBI has been linked to immunodeficiency characterized
by decreased T lymphocyte counts (Mazzeo et al. 2006). The
effects of propranolol on the peripheral immune system using
Sprague-Dawley rats subjected to controlled cortical injury was
examined (Yang et al. 2019). Specifically, the study investigated
the expression of programmed cell death-1 (PD-1) and produc-
tion of [IFNg and TNFa by T cells. Twenty-four hours after injury,
propranolol treatment reversed the elevation of PD-1-positive
CD4+ and CD8+ T cells, which impaired T cell function and
contributed to the dysfunction of B cells. Further, propranolol
also increased the production of [FNg by CD4+ cells and TNFa
by CD8+ cells, suggesting that propranolol may be able to atten-
uate the TBI-induced immunodeficiency.

Additionally, a study investigated the potential mechanism
of propranolol’s cardioprotective effects following TBI in rats
subjected to controlled fluid percussion injury (Larson et al.
2012). Propranolol treatment decreased the level of reactive
oxygen species in the left atrium and therefore may potentially
mitigate damage to the myocardium caused by oxidative stress.

Discussion

In our systematic review, we observed that propranolol may
be a potential treatment intervention in TBI. The effect
of propranolol was evaluated for several reasons. First, it
has been the most frequently studied beta-blocker in TBI
patients. Many studies have demonstrated that propranolol
may be superior to other beta-blockers in mitigating sec-
ondary injuries following TBI (Ley et al. 2018; Schroeppel
et al. 2014) Propranolol has advantages given its lipophi-
licity and central nervous system penetration (Schroeppel
et al. 2014). Our review demonstrates that the benefits of
propranolol are not limited to counteracting the catechola-
mine surge following TBI. In the brain, propranolol may
reduce secondary injury and improve cognitive function
by increasing cerebral perfusion and preventing neuronal
cell death, leukocyte mobilization and p-tau accumulation.
Peripherally, propranolol may be able to attenuate the TBI-
induced immunodeficiency by recovering T cell function,
and mediate cardioprotective effects by reducing oxidative
stress in the heart.

@ Springer

Limitations

Overall, the heterogeneity of TBI including differences in
location and severity of injury as well as the species of the
animal models hindered the reproducibility of the findings
across studies. The animals differ biologically from humans
which prevents a perfect model of the secondary injury
development that occurs in human patients with TBI (Xiong
et al. 2013). Both the mouse and rat models exhibit different
physiological and behavioural responses to TBI (Fox et al.
1999; Reid et al. 2010). In addition, most TBI studies omit
measurements of pCO2, pO2, blood pH or pressure, and body
temperature, which can affect animal response to TBI and
treatment. Furthermore, sex differences exist in animals used
to study TBI. Specifically, estrogen has been shown to have
a neuroprotective effect and is associated with less sequalae
after TBI (Roof and Hall 2000). As a result, studies tend to
choose biological males as the model system for TBI, thus
leading to biases in sex (Lopez et al. 2022a, b; Wallen et al.
2022). For example, the changes that were observed in male
mice in response to propranolol treatment were not observed
in female mice (Singer et al. 2023). Therefore, findings from
this review may lack generalizability of findings from animal
studies to humans. In addition, there are differences in pro-
pranolol doses and routes of administration across studies.
This can be problematic because propranolol’s effects on cer-
ebral autoregulation, neuronal cell death, and immunomodu-
lation in human patients may vary widely depending on its
dose. Therefore, human studies using standardized doses of
propranolol are needed.

Implications for Future Research

TBI has been associated with cardiac dysfunction. Catechola-
mine surges have been associated with increased reactive oxy-
gen species (ROS) (Singal et al. 1983), which in turn can cause
necrosis of cardiomyocytes (Cruickshank et al. 1987; Neil-
Dwyer et al. 1978). This is thought to contribute to development
of new onset cardiomyopathy following TBI. Current standard
of care for cardiovascular compromise following TBI is largely
the same as other etiologies of heart failure — this involves hemo-
dynamic support in the case of cardiogenic shock, provision of
cardioprotective medications like angiotensin-receptor blockers
and beta blockers. Therefore, propranolol may be an ideal agent
for treating cardiac dysfunction associated with TBI by decreas-
ing myocardial ROS levels (Larson et al. 2012).

Moreover, TBI has also been associated with relative immu-
nodeficiency as evidenced by increased incidence of infections
in TBI populations. The nature of this immunodeficiency is
not yet well understood, although some studies suggest that
T cell function may be compromised. There is no established
treatment to address this immunodeficiency. Animal studies



Journal of Neuroimmune Pharmacology (2024) 19:33

Page150f18 33

suggest that TBI-induced immunodeficiency may be reversed
by recovery of T cell function by administering propranolol.
Further studies of propranolol in human T-cells are needed
in order to confirm whether this phenomenon is also seen in
humans. One way to reduce morbidity and mortality in TBI
would be by reducing infectious complications, which may
be achieved by propranolol’s restoration of immune function.

Conclusion

In our systematic review of preclinical studies of TBI mod-
els, it was observed that propranolol may be a potential
therapeutic intervention to consider in TBI. Propranolol
potentially mediates its therapeutic effects in the brain by
increasing cerebral perfusion and decreasing neuronal cell
death, leukocyte mobilization, and p-tau accumulation; and
peripherally by regulating T lymphocyte response and lev-
els of reactive oxygen species. However, this review may
be limited by the lack of generalizability of findings from
animal studies to humans and the heterogeneity of TBI.
Before propranolol can be considered in clinical practice,
well-designed trials in TBI patients should be performed to
evaluate the effect of propranolol.
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